Gate project

Timo Savola
FOSDEM 2020



Portable execution state

Migrate live programs between desktops, servers and devices - safely.
Gain control by repositioning the abstraction layer.

Distributed software architecture, or dynamic network architecture.

Disclaimer: not a blockchain.



Reposition the abstraction layer



Reduce external interface surface

Display and input API Format specifications
Human : :
interface : Application _ Data files
devices : ;

Data is portable. Portable code can be bundled with it, dissolving the boundary.



Reposition communication interface for locality

Network protocol Local API

Server: 5 Server:

cliEm: Controller : Services

API can be moved into the server. Network I/O patterns become a client detail.



Gate

Personal hobby research project.
In development for 5 years - or over 10 if counting previous experiments.
BSD license.

https://github.com/tsavola/gate
https://gate.computer


https://github.com/tsavola/gate
https://gate.computer

Three tiers
WebAssembly
Portable program format, and a tooling ecosystem to go along with it.

Runtime for untrusted code

Usual Linux containerization features, but with extreme decoupling.

Pluggable, discoverable services

Hosts can provide their own sets of APIs.


https://webassembly.org

Portable snapshot and restore

No support needed from user programs.

A running instance can be suspended at any time. The effect is immediate
(or at least the time is bounded).

Snapshots are WebAssembly binaries with Gate-specific custom sections.
Other runtimes could load them, but they appear as modules without any
export Functions.

Halted instances have returned from their entry function. Such snapshots
have export functions, which may be called to re-enter the program.



Internals
Go packages, including a WebAssembly compiler:
https://github.com/tsavola/wag
Runtime core implemented in C and assembly.
Implementation is currently Linux-specific. Supports x86-64 and ARM64.

Can also run on Android.


https://github.com/tsavola/wag

Safety

WebAssembly defines a logical sandbox.
Each program invocation has its own OS process.
Service interaction happens via IPC messages sent through pipes.

Linux syscalls restricted via seccomp Filter:

Whitelist: read, write, close, ppoll, mprotect, rt_sigreturn, exit_group.
mprotect arguments are restricted.

Finally, employ all the Linux namespaces to protect the host system.



Services

Services are discovered and may disappear as the program migrates.

Implementations:

catalog — explore available services.
origin—1/O with the originator/owner of the instance (= stdio).
gate.computer/localhost —access whitelisted HTTP endpoints.

Services are implemented in Go. State serialization has an important role.

Next step: Support communication among peers on a server.


https://gate.computer/localhost

User program APIs

Impossible to support standard APIs meaningfully. Limited WASI support;
Gate services are accessible through a dedicated File descriptor.

No blocking system calls. Purely asynchronous programming model.
Primitive C APIl. Used for simple test programs.

Rust is ideal for lightweight WebAssembly programs:

Gain crate provided Gate support, but it's out of date.
Next step: Update it, with std futures and async/await syntax support.


https://wasi.dev
https://crates.io/crates/gain

Demo

Start the Gate port of Doom on an x86-64 machine.
Suspend it (SIGQUIT).

Show stack trace at the suspension point.

Create a snapshot.

Inspect the snapshot using wasm-objdump.

Copy the snapshot to an ARM64 machine.

Resume the game from the snapshot.

NouUuhrWDN =

https://github.com/tsavola/doom
https://gate.computer/raster


https://github.com/tsavola/doom
https://gate.computer/raster

x86-64 $ uname -a
Linux saukko 5.3.0-28-generic #30~18.04.1-Ubuntu SMP Fri Jan 17 06:14:09 UTC 2020 x86_64 x86_64 x86_64 GNU/Linux
x86-64 S gate call doom.wasm < /usr/share/games/doom/doom1.wad
DOOM Shareware Startup v1.10

V_Init: allocate screens.
M_LoadDefaults: Load system defaults.

Z_Init: Init zone memory allocation daemon.
W_Init: Init WADfiles.

adding DOOMWADDIR/doom1.wad

Shareware!

M_Init: Init miscellaneous info.

R_Init: Init DOOM refresh daemon - [.. 1
InitTextures

InitFlats. o000

InitSprites

InitColormaps

R_InitData

R_InitPointToAngle

R_InitTables

R_InitPlanes

R_InitLightTables

R_InitSkyMap

R_InitTranslationsTables

P_Init: Init Playloop state.

I_Init: Setting up machine state.
D_CheckNetGame: Checking network game status.
startskill 2 deathmatch: @ startmap: 1 startepisode: 1
player 1 of 1 (1 nodes)

S_Init: Setting up sound.

HU_Init: Setting up heads up display.

ST _Init: Init status bar.




x86-64 S gate call doom.wasm < /usr/share/games/doom/doom1.wad
DOOM Shareware Startup v1.10
V_Init: allocate screens.
M_LoadDefaults: Load system defaults.
Z_Init: Init zone memory allocation daemon.
W_Init: Init WADfiles.
adding DOOMWADDIR/doom1.wad

Shareware!

M_Init: Init miscellaneous info.
R_Init: Init DOOM refresh daemon - [.. ]
InitTextures
IntEFlats.vvaens
InitSprites
InitColormaps
R_InitData
R_InitPointToAngle
R_InitTables
R_InitPlanes
R_InitLightTables
R_InitSkyMap
R_InitTranslationsTables
P_Init: Init Playloop state.
I_Init: Setting up machine state.
D_CheckNetGame: Checking network game status.
startskill 2 deathmatch: @ startmap: 1 startepisode: 1
player 1 of 1 (1 nodes)
S_Init: Setting up sound.
HU_Init: Setting up heads up display.
ST_Init: Init status bar.
N
\
bc32807d-eee8-4775-b4dd-48abdee67bfc SUSPENDED
x86-64 $ |}



x86-64 $ gate snapshot bc32807d-eee8-4775-b4dd-48abdee67bfc snapshot.wasm
M4nulfwg81A-SHsc27CG191yjliyu67VDTev12N-s5VkCIpUCzwk8aUoF6IDbull
x86-64 $ gate debug bc32807d-eee8-4775-b4dd-48abdee67bfc backtrace
#0 0x6e69 in NetUpdate at /home/user/doom/linuxdoom-1.10/d_net.c:320
#1 Ox7ele in TryRunTics at /home/user/doom/linuxdoom-1.10/d_net.c:655
0 0000000000000004 COOOOOOOEEEOO001 CEEOOOOOEEEEOCOC OOEEOOOOOOEEEOO1
4 0000000000000be8 0OOOEOOOOOOEOOO1 COOOOEEOOOOOObe8 COOOOOOEOOOOOEOO
#2 0x5434 in D_DoomLoop at /home/user/doom/linuxdoom-1.10/d_main.c:386
0 0000000000000000
#3 Ox6aaf in D_DoomMain at /home/user/doom/linuxdoom-1.10/d_main.c:0
0 0000000001922450 COOOEOOOEOOCEOOO COCEOOEEOOEEOOEO OEEOOEEOOEOOOEOO
4 0000000000000000
#4 0x0896 in _start at /home/user/doom/linuxdoom-1.10/1ibc.c:262
x86-64 $ |]



x86-64 $ wasm-objdump -h snapshot.wasm

snapshot.w

Sections:

Type
Import
Function
Table
Memory
Global
Custom
Custom
Elem
Code
Custom
Custom
Data
Custom
Custom
Custom
Custom
Custom
Custom
Custom
Custom
x86-64 $ |]

asm:

start=0x0000000b
start=0x000000a5
start=0x00000108
start=0x00000366
start=0x0000036f
start=0x00000375
start=0x00000380
start=0x0000039b
start=0x000003bf
start=0x000004db
start=0x00033fb1
start=0x00033ff7
start=0x000340a7
start=0x019640b4
start=0x019e1e30
start=0x019f2386
start=0x019f64a8
start=0x019fd7f5
start=0x01a29f06
start=0x01aba450
start=0x01abc9b7

file format wasm 0Ox1

end=0x000000a3
end=0x00000105
end=0x00000364
end=0x0000036d
end=0x00000373
end=0x0000037e
end=0x00000399
end=0x000003bc
end=0x000004d7
end=0x00033faf
end=0x00033ff4
end=0x000340a2
end=0x019640b0O
end=0x019e1le2c
end=0x019f2382
end=0x019f64a4
end=0x019fd7f1
end=0x01a29f02
end=0x01aba44d
end=0x01abc9b5
end=0x01abca2?2

(size=0x00000098)
(s1ze=0x00000060)
(size=0x0000025c)
(size=0x00000007)
(s1ze=0x00000004)
(size=0x00000009)
(s1ze=0x00000019)
(size=0x00000021)
(size=0x00000118)
(size=0x00033ad4)
(size=0x00000043)
(size=0x000000ab)
(s1ze=0x01930009)
(size=0x0007dd78)
(s1ze=0x00010552)
(size=0x0000411e)
(si1ze=0x00007349)
(size=0x0002c70d)
(si1ze=0x00090547)
(size=0x00002565)
(si1ze=0x0000006b)

count:
count:
count:

20
4
602

count: 1
count: 1
count: 1

"gate
"gate

.snapshot"
.export"

count: 1

count:

602

"gate.buffer"

"gate

.stack"

count: 1

.debug_1info"
.debug_loc"
.debug_ranges"
.debug_abbrev"
.debug_line"
.debug_str"

llnamell
"producers”



armé4 $ uname -a
Linux graviton 4.15.0-1057-aws #59-Ubuntu SMP Wed Dec 4 09:58:16 UTC 2019 aarch64 aarch64 aarch64 GNU/Linux
arme4 $ gate call snapshot.wasm




Gate components
gate
Command-line client for the local daemon and remote servers.

gated

D-Bus daemon running and managing programs for the local user.

gate-server

Web server serving the public, or just authenticated users.


https://en.wikipedia.org/wiki/D-Bus

Server highlights

Can be configured to serve anonymous drive-by execution requests.

Uses Ed25519 public keys For grouping persistent resources.
Authentication is optional. Supports SSH keys and authorized_keys Files.

Optional IPFS support for sourcing programs.

Remote WebAssembly debugging with breakpoints. Portable snapshots.


https://en.wikipedia.org/wiki/Ed25519
https://ipfs.io

Program and instance image management

Stored in sparse files; snapshotting requires shared memory mappings.

Backends:
memfd (or ashmem on Android).

Regular Files on a filesystem, optimized for zero-copy (reflink).
Normally, programs and suspended instances would go on the Filesystem,

and running instances in memory. But instances can also be directly
backed by the Filesystem.



WebAssembly “microcode”

Additional safety layer. Written in WebAssembly text format for stability.

Trusted WebAssembly library between user code and low-level runtime
functions (syscall wrappers) implemented in x86-64/ARM64 assembly.

Implements the Gate runtime ABI (including WASI). Pointer arguments of
ABI functions need to be checked carefully before accessing memory.

The low-level functions avoid pointers so that the WebAssembly compiler
can generate checked memory access code outside of hand-written
assembly code.



gate.computer

savo.la


https://gate.computer
https://savo.la

