
Gate project
Timo Savola

FOSDEM 2020

Portable execution state

Migrate live programs between desktops, servers and devices - safely.

Gain control by repositioning the abstraction layer.

Distributed software architecture, or dynamic network architecture.

Disclaimer: not a blockchain.

Reposition the abstraction layer

USER

CODE

DATA

Indirection layer for portable code

Traditional indirection layer

Reduce external interface surface

Application
Human

interface
devices

Data files

Display and input API Format specifications

Data is portable. Portable code can be bundled with it, dissolving the boundary.

Reposition communication interface for locality

Server:
Controller

Client
Server:

Services

Local APINetwork protocol

API can be moved into the server. Network I/O patterns become a client detail.

Gate

Personal hobby research project.

In development for 5 years - or over 10 if counting previous experiments.

BSD license.

https://github.com/tsavola/gate
https://gate.computer

https://github.com/tsavola/gate
https://gate.computer

Three tiers

WebAssembly

Portable program format, and a tooling ecosystem to go along with it.

Runtime for untrusted code

Usual Linux containerization features, but with extreme decoupling.

Pluggable, discoverable services

Hosts can provide their own sets of APIs.

https://webassembly.org

Portable snapshot and restore

No support needed from user programs.

A running instance can be suspended at any time. The effect is immediate
(or at least the time is bounded).

Snapshots are WebAssembly binaries with Gate-specific custom sections.
Other runtimes could load them, but they appear as modules without any
export functions.

Halted instances have returned from their entry function. Such snapshots
have export functions, which may be called to re-enter the program.

Internals

Go packages, including a WebAssembly compiler:

https://github.com/tsavola/wag

Runtime core implemented in C and assembly.

Implementation is currently Linux-specific. Supports x86-64 and ARM64.

Can also run on Android.

https://github.com/tsavola/wag

Safety

WebAssembly defines a logical sandbox.

Each program invocation has its own OS process.

Service interaction happens via IPC messages sent through pipes.

Linux syscalls restricted via seccomp filter:

Whitelist: read, write, close, ppoll, mprotect, rt_sigreturn, exit_group.
mprotect arguments are restricted.

Finally, employ all the Linux namespaces to protect the host system.

Services

Services are discovered and may disappear as the program migrates.

Implementations:

catalog ‒ explore available services.
origin ‒ I/O with the originator/owner of the instance (≈ stdio).
gate.computer/localhost ‒ access whitelisted HTTP endpoints.
⋯

Services are implemented in Go. State serialization has an important role.

Next step: Support communication among peers on a server.

https://gate.computer/localhost

User program APIs

Impossible to support standard APIs meaningfully. Limited WASI support;
Gate services are accessible through a dedicated file descriptor.

No blocking system calls. Purely asynchronous programming model.

Primitive C API. Used for simple test programs.

Rust is ideal for lightweight WebAssembly programs:

Gain crate provided Gate support, but it's out of date.
Next step: Update it, with std futures and async/await syntax support.

https://wasi.dev
https://crates.io/crates/gain

Demo

1. Start the Gate port of Doom on an x86-64 machine.
2. Suspend it (SIGQUIT).
3. Show stack trace at the suspension point.
4. Create a snapshot.
5. Inspect the snapshot using wasm-objdump.
6. Copy the snapshot to an ARM64 machine.
7. Resume the game from the snapshot.

https://github.com/tsavola/doom
https://gate.computer/raster

https://github.com/tsavola/doom
https://gate.computer/raster

Gate components

gate

Command-line client for the local daemon and remote servers.

gated

D-Bus daemon running and managing programs for the local user.

gate-server

Web server serving the public, or just authenticated users.

https://en.wikipedia.org/wiki/D-Bus

Server highlights

Can be configured to serve anonymous drive-by execution requests.

Uses Ed25519 public keys for grouping persistent resources.
Authentication is optional. Supports SSH keys and authorized_keys files.

Optional IPFS support for sourcing programs.

Remote WebAssembly debugging with breakpoints. Portable snapshots.

https://en.wikipedia.org/wiki/Ed25519
https://ipfs.io

Program and instance image management

Stored in sparse files; snapshotting requires shared memory mappings.

Backends:

memfd (or ashmem on Android).

Regular files on a filesystem, optimized for zero-copy (reflink).

Normally, programs and suspended instances would go on the filesystem,
and running instances in memory. But instances can also be directly
backed by the filesystem.

WebAssembly “microcode”

Additional safety layer. Written in WebAssembly text format for stability.

Trusted WebAssembly library between user code and low-level runtime
functions (syscall wrappers) implemented in x86-64/ARM64 assembly.

Implements the Gate runtime ABI (including WASI). Pointer arguments of
ABI functions need to be checked carefully before accessing memory.

The low-level functions avoid pointers so that the WebAssembly compiler
can generate checked memory access code outside of hand-written
assembly code.

gate.computer
savo.la

https://gate.computer
https://savo.la

