
Open Source Development

Timo Savola
<timo.savola@evtek.fi>

EVTEK Institute of Technology

March 24, 2006
Mid Sweden University, Sundsvall



I Process is open

I Software is free (libre)



Benefits

I Efficiency
I Development does not depend on one or a few parties
I Pace and direction
I Continuity

I Quality
I Transparent process
I Transparent results
I Everyone can fix problems

I Knowledge
I More experts
I New application areas

I Standardization



Problems

I Controversial
I Contradicts with traditional business practices
I Access to information is not exclusive

I Legal issues
I Who is responsible for code written outside of the company?
I Does the code violate patents?
I Has the company licensed parts of the code from other

companies?
I What is expected of a company that modifies software with

certain license terms?



License types

I Free Software Foundation (www.fsf.org)

I Open Source Initiative (www.opensource.org)



Business models

I Dual licensing
I The program is published under a closed and a copyleft license
I A single company holds the copyright for the whole code base

I Products
I Closed programs built on open programs
I Embedded systems (standard software, special hardware)

I Services
I Sell programming instead of programs
I Various kinds of support



Project categorization

1. Dead

a. Unfinished (out of motivation, time or funding)
b. Finished (implements a standard, bugs not found often)

2. Personal
I At an early stage or uninteresting topic
I Small project; no need for many developers

3. Company
I A company opens up their product
I The company wants to continue overseeing the development

4. Community
I Most active/interesting projects
I Development is overseen by the founder, a group of developers

or a foundation



Evolutionary development

I Free software tends to evolve

1. Personal projects
2. Community projects

I Form of iterative development
I Software is built one function(ality) at a time
I Proceeds in the order which pleases the developer

I Practical results
I Software is in real use between iterations



Exploiting free software in products

I Find suitable projects
I Not in early stages of development
I Active developer community
I The license allows for possible closed extensions

I Evaluate/create prototypes
I Free software is not always well understood
I You might not know what you get before you apply it to your

problem
I Never used in your application area?
I No objective information about performance?

I Reuse as much as possible without modification

I Do the rest yourself
I Generic changes to existing projects benefit the community
I Special features of the product might be kept closed



Developing with the community

I Communicate with existing projects

1. Make changes to the upstream version
2. Adapt your changes to the wishes of the community
3. Continue working with the updated upstream version

I Try to create a community around your projects
I Spin-off projects from your product development program

I ROI
I If community accepts your work, they will maintain it for you



Quality assurance

I Developer and user community
I Lots of potential testers and reviewers
I Disorganized

I Only you are responsible for testing
I Input from the community
I Output to your customers

I “More eyeballs find more bugs”
I Might or might not be true for your project



Traditional project organization

I Centralized project management
I Communication
I Code

I Tools support this way of working



Open project organization

I Separate teams develop different features

I Companies want to maintain their custom versions



Challenges

I Branching development
I How are the branches related?
I How do you merge the branches again?

I External developers
I How and where do you submit improvements?
I Are there first- and second-class developers?

I Quality assurance
I Are fixes distributed to all branches?
I Can you easily release a new version of a production branch?

I Tools should not dictate the work flow
I Revision control system



Decentralized version control

I Branches can be located at different physical sites
I Private branches are compatible with the mainline

I Separate development teams have own branches
I Used like a centralized revision control system
I Finished work can either be merged to mainline or maintained

separately

I Each developer has her own branch
I A work-in-progress version of a particular feature
I The finished feature is merged to the team’s branch
I Fine-grained revision history
I Automatic backups

I Contribution is easy
I Everyone makes changes using the same tools
I Project leader approves or refuses contributed changes



...



?


